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Reaction-diffusion system with self-organized critical behavior
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Abstract. We describe the construction of a conserved reaction-diffusion system that exhibits self-organized
critical (avalanche-like) behavior under the action of a slow addition of particles. The model provides an
illustration of the general mechanism to generate self-organized criticality in conserving systems. Extensive
simulations in d = 2 and 3 reveal critical exponents compatible with the universality class of the stochastic
Manna sandpile model.

PACS. 05.70.Ln Nonequilibrium and irreversible thermodynamics – 05.65.+b Self-organized systems

Since the introduction of the Bak, Tang, and Wiesenfeld
sandpile model [1], the concept of self-organized criticality
(SOC) [2] has witnessed a real explosion of activity, cover-
ing both the description of new models and the proposal of
several theoretical approaches, aiming at an understand-
ing of SOC phenomena in terms of standard statistical
mechanical concepts. At this respect, it has been shown
that SOC in sandpile models is related to the behavior of
absorbing-state phase transitions (APT) with many ab-
sorbing states [3,4]. Indeed, this very idea is underlying a
recipe proposed for the construction of SOC models [5]:
any cellular automata, defined with conserved microscopic
rules, and possessing many absorbing states, will display
SOC behavior if slowly driven with the addition of en-
ergy/particles at a rate h and dissipation at a rate ε: i.e.,
in the double limit h → 0, ε → 0, with h/ε → 0 [6]. This
mechanism is easily seen at work in all standard sandpile
models proposed so far [1,7,8].

Given that most SOC systems are defined in terms
of sandpile-like models (with the exception of the forest-
fire [9] and extremal [10] models), it becomes all the most
interesting to explore the possibility of applying the recipe
of reference [5] to models of a qualitatively different sort.
In this paper we consider a reaction-diffusion (RD) model
showing an APT that conserves the total number of parti-
cles [11,12]. This model exhibits a non-equilibrium phase
transition in the same universality class of fixed energy
stochastic sandpiles [4,12]. Here, we show that imple-
menting the slow driving condition, the model reaches a
stationary state with an avalanche-like reaction activity
with critical properties. By measuring usual magnitudes
characterizing the SOC behavior, we compare the model
with standard slowly driven sandpiles. The critical expo-
nents measured confirm the shared universality class with
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stochastic sandpiles, and provide a vivid illustration of the
SOC generating mechanism [5].

We focus on the two species RD system [11,12], re-
cently proposed to describe APT coupled to a non-
diffusive conserved field [13]. The RD system is defined
by the following set of reaction steps:

B → A with rate k1, (1)
B +A→ 2B with rate k2. (2)

In this system, B particles diffuse with diffusion rate DB,
and A particles do not diffuse, that is, DA = 0. From the
rate equations (1) and (2), it is clear that the dynamics
conserves the total number of particles N = NA + NB,
where Ni is the number of particles i = A,B. In this
model, the dynamics is exclusively due to B particles,
that we identify as active particles. A particles do not dif-
fuse and cannot generate spontaneously B particles. More
specifically, A particles can only move via the motion of
B particles that later on transform into A through equa-
tion (2). This implies that any configuration devoid of
B particles is an absorbing state in which the system is
trapped forever. The number of these absorbing states is
infinite – in the thermodynamic limit – corresponding to
all the possible redistributions of N particles of type A
in the system. This RD process exhibits a phase transi-
tion from an active phase (with an everlasting activity of
B particles) to an absorbing phase (no B particles) for a
critical value ρ = ρc of the total particle density [12].

Here, we define a driven-dissipative version of the RD
model by applying the recipe of references [4,5]. On hy-
percubic lattices of size L with open boundary conditions,
each site i stores a number ai of A particles and bi of
B particles. The occupation numbers ai and bi can have
any integer value, including ai = bi = 0, that is, void
sites with no particles. The model is thus representing the
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dynamics of bosonic particles. The initial configuration is
constructed by randomly distributing a number N0 of A
particles in the lattice. The initial occupation numbers ai
have a Poissonian distribution, while bi = 0,∀i. Any con-
figuration is stable whenever it fulfills this condition, i.e.,
in the absence of B particles. The system is driven by
adding one B particle to a randomly chosen site. A state
with at least one B particle is called active. Active states
evolve in time according to the following update rules,
that mimic the diffusion and reaction steps in the RD
system: I) Diffusion: on each lattice site, each B particle
moves into a randomly chosen nearest neighbor site with
probability 2d/(2d + 1), and stays in the same site with
probability 1/(2d+1); this results in an effective diffusivity
DB = 1/(2d+ 1). II) After all sites have been updated for
diffusion, we perform the reactions: a) On each lattice site,
each B particle is turned into an A particle with probabil-
ity r1. b) At the same time, each A particle becomes a B
particle with probability 1−(1−r2)bi , where bi is the total
number of B particles in that site. This corresponds to the
average probability for an A particle of being involved in
the reaction (2) with any of the B particles present on the
same site. The probabilities r1 and r2 are related to the
reaction rates k1 and k2 defined in equations (1) and (2).
In general, we have that ri(ki = 0) = 0, ri(ki = ∞) = 1,
and ri is an increasing function of ki. The analytic ex-
pression of ri as a function of ki is presumably quite com-
plex and nontrivial. However, as we will argue later, the
knowledge of the precise relationship between ri and ki
is not necessary, since the critical behavior of the model
should be independent of the exact values of the parame-
ters ri selected. B particles on boundary sites may choose
to diffuse out of the lattice. In this case, the particle is re-
moved out of the system, contributing to the dissipation.
The system is updated in parallel until there are no more
B particles and it is again in an absorbing state. During
the dynamic evolution, the addition of new B particles is
suspended; this of course corresponds to the slow-driving
condition. The sequence of updates in the system (from
the time we introduce a new B particle until a stable state
is reached) is interpreted as an avalanche. We characterize
avalanches by their size s and their duration t. The size
of an avalanche is defined as the number of B particles
present in the system at each time step, summed over all
the parallel updates required to reach a new stable state.
The duration of an avalanche is defined as the total num-
ber of parallel updates performed during the avalanche.
In the slow driving perspective, the existence of a critical
stationary state is easily understood. Particles are added
only in the absence of activity (ρ < ρc), while dissipation
acts only during activity (ρ > ρc). This implies that ∂tρ
always drives the system toward ρc, that in the thermo-
dynamic limit is the only possible stationary value of the
density [4,5].

We have performed numerical simulations of this
model in dimensions 2 and 3, with system sizes ranging
from L = 64 to L = 1024 in d = 2, and from L = 74 to
L = 280 in d = 3. The reaction rates ri reported here are
r1 = 0.3 and r2 = 0.4 in d = 2, and r1 = 0.4 and r2 = 0.5
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Fig. 1. Number of A particles NA (dashed line) and average
avalanche size 〈s〉 (full line) as a function of the number of
avalanches T in a slowly driven conserved reaction diffusion
system in a lattice of size L = 256. The initial state is an
empty lattice.

in d = 3; the numerical results however, are independent
of the particular values of the reaction rates ri employed.
The independence of the dynamics from the particular
parameters ri chosen can be easily grasped by the mean-
field approach reported in reference [11], that shows the
existence of a single critical point. More precisely, this
can be understood in terms of renormalization-group ar-
guments: The critical behavior of the model is ruled by
the fixed point toward which the parameters flow under
an appropriate renormalization-group transformation [11].
Thus, the critical exponents are independent of the initial
values of the parameters, and depend only on the value of
the unique fixed point. It is then natural that simulations
performed with different ri parameters will yield the same
steady state behavior. This fact is confirmed by the nu-
merical simulations, which show differences only in the
transient regime. After the transient initial regime (whose
length depends on L, ri, and the initial concentration N0

of A particles), the system reaches a steady state in which
the stable configurations have a constant average number
N̄A of A particles and avalanches have a constant average
size 〈s〉. As an example, in Figure 1, we plot the number
of A particles and the average avalanche size as a func-
tion of the number of avalanches T in a simulation with
system size L = 256 in d = 2, starting from an empty lat-
tice. In analogy with sandpiles and SOC phenomena, in
the steady state, we compute the probability distribution
of sizes P (s) and times P (t) for the reaction events. By
assuming the usual finite-size scaling form (FSS) [14]

P (s, L) = s−τsF
( s

LD

)
, (3)

P (t, L) = t−τtG
(
t

Lz

)
, (4)

we can define the standard critical exponents, τs, τt, D
(the fractal dimension), and z (the dynamic critical ex-
ponent), which characterize the universality class of the



R. Pastor-Satorras and A. Vespignani: Reaction-diffusion system with self-organized critical behavior 585

Table 1. Critical exponents for the conserved RD and the
stochastic Manna models in d = 2. Figures in parenthesis in-
dicate the statistical uncertainty in the last digit. Manna ex-
ponents from references [17–20].

τs D τt z

Conserved RD 1.28(1) 2.75(1) 1.50(2) 1.54(1)

Manna 1.28(1) 2.76(1) 1.48(2) 1.55(1)

Table 2. Critical exponents for the conserved RD and the
stochastic Manna models in d = 3. Figures in parenthesis in-
dicate the statistical uncertainty in the last digit.

τs D τt z

Conserved RD 1.42(1) 3.36(1) 1.80(2) 1.77(1)

Manna 1.41(1) 3.36(1) 1.78(2) 1.76(1)

model. Averages are performed over at least 5× 106 ava-
lanches in d = 2. The distributions on d = 3 are consid-
erably noisier; averages have thus been done in this case
over 107 avalanches. In order to check the plausibility of
the FSS hypothesis (3) and (4), and compute the corre-
sponding critical exponents, we have applied the moment
analysis technique, introduced in reference [15]. We define
the q-th moment of the avalanche size distribution on a
lattice of size L as 〈sq〉L =

∫
ds sq P (s, L). If the FSS hy-

pothesis (3) is valid in the asymptotic limit of large s, then
the q-th moment has the following dependence on system
size:

〈sq〉L = LD(q+1−τs)
∫

dy y(q−τs) F(y) ∼ Lσs(q). (5)

The exponent σs(q) = D(q + 1 − τs) is computed as the
slope of the log-log plot of 〈sq〉L as a function of L. For
large enough values of q (i.e., away from the region where
the integral in (5) is dominated by its lower cut-off), one
can compute the fractal dimension D as the slope of σs(q)
as a function of q: D = ∂σs(q)/∂q. Once D is known
we can estimate τs using the relation σs(1) = D(2 − τs).
The exponent σs(1), giving the scaling of the average
avalanche size, can be estimated using a standard argu-
ment in sandpiles: a new injected particle B performs a
diffusing Brownian motion and has to travel, on average,
a distance of order L2 before reaching the boundary. In
the stationary state, to each B particle drop must corre-
spond, on average, a B particle diffusing out of the sys-
tem. This implies that the average avalanche size corre-
sponds to the average number of diffusion steps needed
for a B particle to reach the boundary; i.e., 〈s〉 ∼ L2, and
thus σs(1) = 2. Along the same lines we can obtain the
moments of the avalanche time distribution. In this case,
〈tq〉L ∼ Lσt(q), with ∂σt(q)/∂q = z. Analogous considera-
tions for small q apply also for the time moment analysis.
Then, the τt exponent can be found using the scaling re-
lation z(2− τt) = σt(1).

We have computed the exponents τs, τt, D, and z from
our data, using the moment analysis method. Our results
are reported in Tables 1 and 2. The validity of these ex-
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Fig. 2. Data collapse analysis of the integrated avalanche size
distribution for the conserved RD model in d = 2. System sizes
L = 64, 128, 256, 512, and 1024.
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Fig. 3. Data collapse analysis of the integrated avalanche time
distribution for the conserved RD model in d = 2. System sizes
L = 64, 128, 256, 512, and 1024.

ponents can be checked a posteriori by means of a data
collapse analysis: If the FSS hypothesis of equations (3)
and (4) is correct, then the plots of the distributions, un-
der the rescaling s → s/LD and P (s) → P (s)LDτs , and
correspondingly t → t/Lz and P (t) → P (t)Lzτt , should
collapse onto the same universal function, for different
values of L. Figures 2 and 3 show the data collapse for
the distributions of sizes and times in d = 2, respectively.
Analogous plots for the case d = 3 are presented in Fig-
ures 4 and 5. From these plots we conclude that our model
fulfills the FSS hypothesis, and is in this sense critical, be-
ing characterized by the exponents reported in Tables 1
and 2.

Once we have shown that the slowly driven conserved
RD model exhibits SOC behavior, it is interesting to check
whether it shares the same universality class with any
other SOC models. Given its stochastic rules, the natural
candidate for comparison is the stochastic Manna sand-
pile model [8,16]. In Table 1 we quote the exponents for
the Manna model in d = 2, whose value has been rel-
atively well established by different sets of independent
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Fig. 4. Data collapse analysis of the integrated avalanche size
distribution for the conserved RD model in d = 3. System sizes
L = 74, 100, 140, 200, and 280.
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Fig. 5. Data collapse analysis of the integrated avalanche time
distribution for the conserved RD model in d = 3. System sizes
L = 100, 140, 200, and 280.

simulations [17–20]. The case d = 3 has not been stud-
ied so thoroughly, with the exception of the simulations of
Lübeck [18]. Thus, in order to compare our results with the
conserved RD model, we have carried out large-scale sim-
ulations of the d = 3 stochastic Manna model. The expo-
nents obtained are given in Table 2, while Figures 6 and 7
plot the data collapse for sizes and times, respectively. Av-
erages are performed over 107 non-zero avalanches, and
the system sizes considered range from L = 74 to L = 400
(larger than those achieved by Lübeck [18]).

From the examination of Tables 1 and 2, we conclude
that the present conserved RD model exhibits exponents
fully compatible with those of the stochastic Manna sand-
pile model in both d = 2 and d = 3. This coincidence
of exponents proves that both models belong to the same
universality class. This fact is altogether not surprising,
since both models exhibit the same basic symmetries:
isotropic diffusion of particles, stochastic conserved mi-
croscopic rules, and presence of infinitely many – in the
thermodynamic limit – absorbing states. This result rep-
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Fig. 6. Data collapse analysis of the integrated avalanche size
distribution for the stochastic Manna model in d = 3. System
sizes L = 100, 140, 200, 280, and 400.
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Fig. 7. Data collapse analysis of the integrated avalanche time
distribution for the stochastic Manna model in d = 3. System
sizes L = 100, 140, 200, 280, and 400.

resents a further confirmation of the universality claim
made in references [12,13] for this kind of systems.

In summary, we have shown how to construct a slowly-
driven conserved RD system which exhibits SOC behav-
ior (avalanche macroscopic dynamics). The key points are
the application of the slow-driving condition (addition of
new B particles) plus boundary dissipation (diffusion of
B particles out of the system). The model is characterized
by critical exponents that place it in the same universal-
ity class than the Manna stochastic sandpile model. The
related model proposed in reference [11] with DA 6= 0,
however, belongs to a different universality class [12]. The
limit DA → 0 in the theory with DA 6= 0 is non-analytic;
any infinitesimal amount of diffusion in the energy field
renormalizes to a finite value, and definitely changes the
universality class of the model.
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